Свердловские ученые совместно с иностранными коллегами определили, какие факторы влияют на необдуманное поведение людей

В исследовании приняли участие сотрудники Бангладешского института управления и менеджмента, университета Далхаузи, университета Южного Иллинойса и государственного университета Оклахомы

Исследователи Уральского федерального университета с коллегами из Канады, США и Бангладеш создали новую модель анализа данных и выяснили, какие люди склонны к риску. Ученые считают, что использование социологическими компаниями нового алгоритма позволит сократить расходы на создание различных индексов, в том числе индексов риска, сообщили в пресс-службе УрФУ.

«Прогнозировать склонность к риску среди тех или иных групп населения очень важно, поскольку это влияет на социально-экономическую жизнь общества, особенно на те сферы, которые связаны с фондовым рынком, рынком страхования, азартными играми и так далее. При помощи нашего метода мы проанализировали большой пласт информации, представленной компанией Gallup за 2006–2018 годы, и выяснили, какие группы людей более или менее были склонны к риску в этот период. Оказалось, например, что мужчины более склонны рисковать, чем женщины, а с возрастом рисковое поведение у людей снижается — на 2,28% в год», — рассказал лаборант-исследователь Школы экономики и менеджмента УрФУ Ахмед Фарок.

Анализ данных показал, что безработные более склонны к опасности, чем люди, работающие полный рабочий день. Также значимым оказался уровень образования: чем он выше, тем больше шансы, что человек пойдет на какой-либо риск. Необдуманное поведение зависит и от региона либо континента, где проживает человек. Так, южноамериканцы склонны вести себя более рискованно, чем африканцы, азиаты, североамериканцы и европейцы.

Ученые отмечают, что к неприятию риска побуждает чувство субъективного благополучия. Например, люди с оптимистичным взглядом менее склонны рисковать.

Помимо данных, предоставленных Gallup, исследователи использовали показатели индекса человеческого капитала, индекса финансового стресса и индекса здоровья за 2006–2018 годы. А точность полученных данных подтверждена среднеквадратической ошибкой.

«Среднеквадратическая ошибка — это метрика для оценки качества модели машинного обучения. Ее значение в нашем исследовании составило 0,05%. Это хороший показатель, который подтверждает точность результатов нашего алгоритма. Также у нашей модели есть особенность: она постоянно самообучается, самосовершенствуется — это позволяет нам использовать ее для создания любых социальных или экономических показателей», — отметил Ахмед Фарок.

Ранее «Областная газета» писала о том, что Юлия Рябова из Свердловской области стала победителем в окружном хакатоне по искусственному интеллекту.

Свердловские биатлонисты завоевали золото и серебро третьего этапа Кубка России

Сегодня в Демино стартовал третий этап Кубка России по биатлону. Свердловчане Наталия Шевченко и...

«Динамо» придали статус

Екатеринбургский стадион «Динамо» известен всем свердловчанам своим образом корабля, выходящего на гладь Городского пруда....

Подписывайтесь на нас в любимой соцсети

Читайте также